Biochemical Characterization of CTX-M-15 from Enterobacter cloacae and Designing a Novel Non-β-Lactam-β-Lactamase Inhibitor

نویسندگان

  • Mohammad Faheem
  • Md Tabish Rehman
  • Mohd Danishuddin
  • Asad U. Khan
چکیده

The worldwide dissemination of CTX-M type β-lactamases is a threat to human health. Previously, we have reported the spread of bla(CTX-M-15) gene in different clinical strains of Enterobacteriaceae from the hospital settings of Aligarh in north India. In view of the varying resistance pattern against cephalosporins and other β-lactam antibiotics, we intended to understand the correlation between MICs and catalytic activity of CTX-M-15. In this study, steady-state kinetic parameters and MICs were determined on E. coli DH5α transformed with bla(CTX-M-15) gene that was cloned from Enterobacter cloacae (EC-15) strain of clinical background. The effect of conventional β-lactamase inhibitors (clavulanic acid, sulbactam and tazobactam) on CTX-M-15 was also studied. We have found that tazobactam is the best among these inhibitors against CTX-M-15. The inhibition characteristic of tazobactam is defined by its very low IC(50) value (6 nM), high affinity (K(i) = 0.017 µM) and better acylation efficiency (k(+2)/K' = 0.44 µM(-1)s(-1)). It forms an acyl-enzyme covalent complex, which is quite stable (k(+3) = 0.0057 s(-1)). Since increasing resistance has been reported against conventional β-lactam antibiotic-inhibitor combinations, we aspire to design a non-β-lactam core containing β-lactamase inhibitor. For this, we screened ZINC database and performed molecular docking to identify a potential non-β-lactam based inhibitor (ZINC03787097). The MICs of cephalosporin antibiotics in combination with this inhibitor gave promising results. Steady-state kinetics and molecular docking studies showed that ZINC03787097 is a reversible inhibitor which binds non-covalently to the active site of the enzyme through hydrogen bonds and hydrophobic interactions. Though, it's IC(50) (180 nM) is much higher than tazobactam, it has good affinity for CTX-M-15 (K(i) = 0.388 µM). This study concludes that ZINC03787097 compound can be used as seed molecule to design more efficient non-β-lactam containing β-lactamase inhibitor that could evade pre-existing bacterial resistance mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The β-lactamase inhibitor avibactam (NXL104) does not induce ampC β-lactamase in Enterobacter cloacae

Induction of ampC β-lactamase expression can often compromise antibiotic treatment and is triggered by several β-lactams (such as cefoxitin and imipenem) and by the β-lactamase inhibitor clavulanic acid. The novel β-lactamase inhibitor avibactam (NXL104) is a potent inhibitor of both class A and class C enzymes. The potential of avibactam for induction of ampC expression in Enterobacter cloacae...

متن کامل

Characterization of CTX - M ESBLs in Enterobacter cloacae , Escherichia coli and Klebsiella 1 pneumoniae

2 3 Background: A high rate of resistance to 3 rd generation cephalosporins among Enterobacteriaceae 4 isolates from Egypt has been previously reported. This study aims to characterize the resistance 5 mechanism (s) to extended spectrum cephalosporins among resistant clinical isolates at a medical 6 institute in Cairo, Egypt. 7 Methods: Nonconsecutive Klebsiella pneumoniae (Kp), Enterobacter cl...

متن کامل

Kinetics of avibactam inhibition against Class A, C, and D β-lactamases.

Avibactam is a non-β-lactam β-lactamase inhibitor with a spectrum of activity that includes β-lactamase enzymes of classes A, C, and selected D examples. In this work acylation and deacylation rates were measured against the clinically important enzymes CTX-M-15, KPC-2, Enterobacter cloacae AmpC, Pseudomonas aeruginosa AmpC, OXA-10, and OXA-48. The efficiency of acylation (k2/Ki) varied across ...

متن کامل

Distribution of extended-spectrum β-lactamases, AmpC β-lactamases, and carbapenemases among Enterobacteriaceae isolates causing intra-abdominal infections in the Asia-Pacific region: results of the study for Monitoring Antimicrobial Resistance Trends (SMART).

The increasing trend of β-lactam resistance among Enterobacteriaceae is a worldwide threat. Enterobacteriaceae isolates causing intra-abdominal infections (IAI) from the Study for Monitoring Antimicrobial Resistance Trends (SMART) collected in 2008 and 2009 from the Asia-Pacific region were investigated. Detection of extended-spectrum β-lactamases (ESBLs), AmpC β-lactamases, and carbapenemases ...

متن کامل

Extended-spectrum-β-lactamase-producing Enterobacteriaceae isolated from vegetables imported from the Dominican Republic, India, Thailand, and Vietnam.

To examine to what extent fresh vegetables imported into Switzerland represent carriers of extended-spectrum-β-lactamase (ESBL)-producing Enterobacteriaceae, 169 samples of different types of fresh vegetables imported into Switzerland from the Dominican Republic, India, Thailand, and Vietnam were analyzed. Overall, 25.4% of the vegetable samples yielded one or more ESBL-producing Enterobacteria...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013